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ABSTRACT 
 
Artificial intelligence (AI) now matches or outperforms human intelligence in an 
astonishing array of games, tests, and cognitive tasks that involve high-level 
reasoning and thinking. Many argue that humans should—or will soon—be 
replaced by AI in situations involving high-level cognition, judgment, and 
decision making. We disagree. In this paper we first trace the historical origins of 
the idea of AI and human cognition as forms of computation. We highlight 
problems with the analogy between computers and minds as input-output 
devices, using large language models as an example. Human cognition is better 
conceptualized as a form of theorizing rather than information processing, data-
based prediction, or Bayesian updating. AI uses a frequency or probability-based 
approach to knowledge and is largely backward-looking and imitative, while 
human cognition is forward-looking and capable of generating genuine novelty. 
We argue that AI’s data-based prediction is different from human theory-based 
causal logic. We introduce the idea of data-belief asymmetries to highlight the 
difference, using the example of “heavier-than-air flight” to illustrate our 
arguments. Theories provide a cognitive mechanism for humans to identify new 
data, a way of intervening in the world, experimenting, and problem solving. 
Throughout the article we discuss the implications of our argument for strategy 
and decision making under uncertainty. 
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INTRODUCTION 
 

Artificial intelligence (AI) now matches or outperforms humans in any number of games, 

standardized tests, and cognitive tasks that involve high-level thinking and strategic reasoning. For example, 

AI engines can readily beat humans in chess, which for decades served as a key benchmark of AI capability 

(Bory, 2019; Simon, 1985). AI systems also now perform extremely well in complex games (like Diplomacy or 

Stratego) that involve sophisticated negotiation, complex interaction with others, alliances, deception, and 

understanding other players’ intentions (e.g., Ananthaswamy, 2022). Current AI models also outperform over 

90% of humans in various professional qualification exams, like the Bar exam in law and the CPA exam in 

accounting (Achiam et al., 2023). AI has also made radical strides in medical diagnosis, beating highly-trained 

medical professionals in diagnosing some illnesses (e.g., Zhou et al., 2023). These rapid advances have led 

some AI scholars to argue that even the most human of traits, like consciousness, will in principle soon be 

replicable by machines (e.g., Butlin et al., 2023; Goyal and Bengio, 2022). In all, AI is rapidly devising 

algorithms that “think humanly,” “think rationally,” “act humanly,” and “act rationally” (Csaszar and 

Steinberger, 2022). 

Given the astonishing progress of AI, Daniel Kahneman asks (and answers) the logical next question: 

“Will there be anything that is reserved for human beings? Frankly, I don’t see any reason to set limits on what 

AI can do…And so it’s very difficult to imagine that with sufficient data there will remain things that only 

humans can do…You should replace humans by algorithms whenever possible” (2018: 609-610, emphasis 

added).  

Kahneman is not alone in this assessment. Davenport and Kirby argue that “we already know that 

analytics and algorithms are better at creating insights from data than most humans,” and that “this 

human/machine performance gap will only increase” (2016: 29). Many scholars claim that AI is likely to 

outperform humans in most—if not all—forms of reasoning and decision making (e.g., Grace et al., 2024, 

Legg and Hutter, 2007; Morris et al., 2023). Some argue that strategic decision making might also be taken 

over by AI (Csaszar, Ketkar and Kim, 2024), or that even science itself will be “automated” (Zhu, and Horton, 

2024; for related arguments, see Agrawal et al., 2024; Zhu and Griffiths, 2024). One of the pioneers of AI, 

Geoffrey Hinton, argues that large language models are sentient and intelligent, and that “digital intelligence” 
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will inevitably surpass human “biological intelligence”—if it has not already done so (see Hinton, 2023; also 

see Bengio et al., 2023).  

Compared to machines, the cognitive and computational limitations of humans are obvious. Humans 

are biased and boundedly rational (for a review, see Chater et al., 2018; also see Kahneman, 2003; Kahneman, 

2011). Humans are selective about what data they attend to and sample, and they are susceptible to 

confirmation and hundreds of other cognitive biases (nearly two hundred as of last count). In short, humans 

are “boundedly rational”—significantly hampered by their ability to compute and process information (Simon, 

1955), particularly compared to computers (cf. Simon, 1990). And the very things that make humans 

boundedly rational and poor at decision making, are seemingly the very things that enable computers to 

perform well on cognitive tasks. The advantage of computers and AI is that they can handle vast amounts of 

data and process it quickly and in powerful ways.  

In this paper we offer a contrarian view of AI relative to human cognition—including its implications 

for strategy and decision making under uncertainty. We first revisit the historical origins of the claim that 

equates computation with human cognition. AI builds on the idea that cognition is a generalized form of 

information processing, an “input-output device.” To illustrate cognitive differences between humans and 

computers, we use the example of large language models versus human language learning. Building on these 

differences, we argue that human cognition in important instances operates in forward-looking fashion—from 

theories to data. We introduce the notion of “data-belief (a)symmetry” and the role this respectively plays in 

explaining AI and human cognition, using “heavier-than-air” flight as an extended example. Human cognition 

is forward-looking, necessitating data-belief asymmetries which are manifest in theories, as well as human 

causal reasoning and experimentation. Human cognition is driven by theory-based causal logic which is 

different from AI’s emphasis on data-based prediction. Theories enable the generation of new and contrarian 

data, observations, and experimentation. We highlight the implications of these arguments for decision making 

under uncertainty, along with briefly highlighting opportunities for considering human-AI hybrid systems.1 

 
1 We need to briefly comment on the title of this paper—“theory is all you need.” Our title echoes the title of the 
“attention is all you need” article that introduced the transformer architecture which (among other technologies) gave rise 
to recent progress in AI (Vaswani et al., 2017). But just as “attention” is not all an AI system or large language model 
needs, so theory of course is not all that humans need. In this article we simply emphasize that theory is a foundational—
often unrecognized—aspect of human cognition, one that is not easily replicable by machines and AI. We emphasize the 
role of theory in human cognition, particularly the ways in which humans counterfactually think about, causally 
experiment, and practically “intervene” in the world. 
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AI = MIND: A REVIEW OF COGNITION AS COMPUTATION 

Modeling the human mind—thinking, rationality, and cognition—has been the central aspiration and 

ambition behind AI from the 1940s to the present (McCulloch and Pitts, 1943; Turing 1948; also see Simon, 

1955; Hinton, 1992; McCorduck, 2004; Perconti and Plebe, 2020). As put by the organizers of the first 

conference on AI—held at Dartmouth in 1956—their goal was to “proceed on the basis of the conjecture that 

every aspect of learning or any other feature of intelligence can in principle be so precisely described that a 

machine can be made to simulate it” (McCarthy et al., 2007: 12). The commonalities between models of AI 

and human cognition are not just historical, but these linkages have only deepened in the intervening decades 

(for a review, see Sun, 2023; also see Laird et al., 2017). Computation also underlies many other models of 

cognition, including the concept of mental models (Johnson-Laird, 1983), the Bayesian brain, and predictive 

coding or processing (e.g., Friston and Kiebel, 2009; Hohwy, 2013, 2020). In fact, cognitive scientist Johnson-

Laird goes so far as to argue that “any scientific theory of the mind has to treat it as an automaton” (1983: 

477). 

AI sees cognition as a general form of computation, specifically where “human thinking is wholly 

information-processing activity” (Feigenbaum, 1963: 249; also see Simon, 1980). This logic is also captured by 

computational neuroscientist David Marr who states that “most of the phenomena that are central to us as 

human beings—the mysteries of life and evolution, of perception and feeling and thought—are primarily 

phenomena of information processing” (1982: 4; cf. Hinton, 2023). Both mind and machine are a type of 

generalized input-output device, where inputs such as stimuli and cues (“data”) are processed to yield varied 

types of outputs, including decisions, capabilities, behaviors, and actions (Simon, 1980; 1990; Hasson et al., 

2020; McCelland and Rumelhart, 1981). This general model of information processing has been applied to any 

number of issues and problems at the nexus of AI and cognition, including perception, learning, memory, 

expertise, search, and decision making (cf. Russell and Norvig, 2022). Furthermore, the idea of human mental 

activity as computation is pervasive in evolutionary arguments. For example, Cosmides and Tooby focus on 

the “information-processing architecture of the human brain” and further argue that “the brain is a computer, 

that is, a physical system that was designed to process information” (2013: 202-203). 

The earliest attempts to develop machines that simulate human thought processes and reasoning 

focused on general problem solving. Newell and Simon’s (1959) “general problem solver” (GPS) represented an 
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ambitious effort to (try to) solve any problem that could be presented in logical form. GPS used means-ends 

analysis, a technique that compared a current state to the desired state (or goal), identified the differences, and 

then applied operators (actions) to reduce these differences. The early excitement associated with GPS and 

other AI models—and their ability to mimic human intelligence and thought—was pervasive. As put by 

Herbert Simon in 1958, “there are now in the world machines that think, that learn and create. Moreover, their 

ability to do these things is going to increase rapidly until—in a visible future—the range of problems they can 

handle will be coextensive with the range to which the human mind has been applied” (Simon and Newell, 

1958: 8).  

Early models like GPS provided the foundations for general cognitive architectures like SOAR and 

ACT-R (Anderson, 1990; Laird, Newell and Rosenbloom, 1987). The enthusiasm for these types of general 

models of cognition and AI continues to this day. Kotseruba and Tsotsos (2020) offer an extensive survey of 

over two hundred different “cognitive architectures” developed over the past decades. The ultimate goal of all 

this research into cognition, they argue, “is to model the human mind, eventually enabling us to build human-

level artificial intelligence” (2020: 21). However, while various cognitive architectures related to AI hope to be 

general—and to mimic or even exceed human capability—their application domains have turned out to be 

extremely narrow and specific in terms of the problems they actually solve. But despite limited success in 

generalizing early models of AI (specifically, from the late 1950s to the 1990s), excitement about the possibility 

of computationally modeling human cognition did not wane. Simon’s frequent collaborator, Alan Newell, 

argued that “psychology has arrived at the possibility of unified theories of cognition,” specifically where “AI 

provides the theoretical infrastructure for the study of human cognition” (1990: 40). This unified approach 

builds on the premise that humans share certain “important psychological invariants” with computers and 

artificial systems (Simon, 1990: 3). This logic has also been captured by such ideas as “computational 

rationality” (Gershman et al., 2015).  

In all, to this day there are ongoing calls for and efforts to develop so-called “common model of 

cognition”—or as put by others, a “standard model of the mind” based on AI (Laird et al., 2017; cf. Kralik et 

al., 2018). The call for general models has been born out of a frustration with the aforementioned proliferation 

of cognitive models that claim to be general, despite the fact that these models are highly heterogeneous, and 

any given model is highly focused on solving very specific tasks and problems. The effort to create a “meta”-
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model of cognitive AI—a model that different proponents of various cognitive architectures could agree on—

has so far led to the identification of relatively generic elements. These models include basic elements like 

perception (focused on incoming stimuli or observations of the state of the world), different types of memory 

(and accompanied learning mechanisms), which in turn are linked to various motor systems and behaviors 

(Laird et al., 2017).  

So far our short and informal review of the AI-cognition nexus has largely focused on symbolic 

systems, so-called “good old-fashioned AI.”2 Another approach to AI and modeling the human mind—called 

subsymbolic—also builds on the idea of information processing and computation but emphasizes bottom-up 

learning. These models also see the mind (or brain) as an input-output device. But the emphasis is on learning 

things “from scratch”—that is, learning directly from data. Vast inputs and raw data are fed to these systems 

to recognize correlations and statistical associations, or in short, patterns. The weakness of the aforementioned 

symbolic systems is that these approaches are only useful for relatively static contexts which do not 

meaningfully allow for any form of dynamic, bottom-up learning from data or environments.  

The foundations of subsymbolic AI were laid by scholars seeking to understand the human brain, 

particularly perception. Rosenblatt (1958, 1962; building on Hebb, 1949) proposed one of the earliest forms of 

a neural network in his model of a “perceptron,” which is the functional equivalent of an artificial neuron. 

Rosenblatt’s work on the perceptron aimed to replicate the human neuron, which when coupled together 

would resemble human neural networks. Since modern artificial neural networks—including convolutional, 

recurrent, autoencoders, generative adversarial networks—build on this broad foundation (e.g., Aggarwal, 

2018; LeCun, Bengio and Hinton, 2015), it is worth briefly highlighting the general architecture of this 

approach. The architecture of the multi-layer perceptron includes layers that resemble the sensory units (input 

 
2 These approaches are an attempt to develop intelligence by the manipulation of symbols—which represent objects, 
concepts, or states of the world—specifically through logical rules and the development of heuristics. The symbolic 
approach to cognitive AI models the world using symbols, and then uses logical operations to manipulate these symbols 
to solve problems. This represents a rule-based and top-down approach to intelligence. It is top-down in the sense that it 
starts with a high-level focus on understanding a particular problem domain and then breaking it down into smaller pieces 
(rules and heuristics) for solving a specific task. Perhaps the most significant applications in AI—between the 1950s and 
late 1980s—were based on these rule-based approaches. One of the more successful applications of an AI-related 
problem solver was the backward chaining expert system MYCIN, which was applied to the diagnosis of bacterial 
infections and the recommendation of appropriate antibiotics for treatment (Buchanan and Shortliffe, 1984). The goal of 
a system like this was to mimic the judgments of an expert decision maker. The model was a type of inference engine that 
used various pre-programmed rules and heuristics to enable diagnosis. In all, AI that is based on symbolic systems 
represents a top-down approach to computation and information processing that seeks to develop a rule- or heuristic-
based approach to replicate how a human expert might come to a judgment or a decision. 
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layer), association units (hidden layer), and response units (output layer) of the brain. This structure is very 

much the foundation of modern neural networks (Hinton, 1992; Rumelhart et al., 1986) and the basis for the 

radical advances made in areas such as AI image recognition and computer vision (Krizhevsky, Sutskever and 

Hinton, 2012).3 The process of learning in a neural network—as specified by Rosenblatt—begins with stimuli 

hitting the sensory units, generating a binary response that is processed by the association cells based on a 

predetermined threshold. The association cells then send signals to the response area, which determine the 

perceptron’s output based on the aggregated inputs from the association cells. The perceptron’s learning 

mechanism is based on feedback signals between the response units and the association units, allowing the 

network to learn and self-organize through repeated exposure to stimuli. So-called Hebbian learning (Hebb, 

1949)—which posits the relatively cliché but important idea that “neurons that fire together, wire together”—

was the precursor to these types of feedback-based learning processes and many modern concepts of neural 

network theory. 

In the intervening decades, research on artificial neural networks has progressed radically from simple 

classifiers to highly complex, multilayer non-linear models capable of sophisticated feature learning and 

pattern recognition through weighting and updates using large datasets (e.g., Aggarwal, 2018; Shazeer et al., 

2017). Various forms and combinations of machine learning types—for example: supervised, unsupervised, 

and reinforcement learning—have enabled radical breakthroughs in image recognition and computer vision, 

recommender systems, game play, text generation, and so forth. And commensurate interest in the interaction 

between human neural networks and AI—various forms of learning—has continued within the cognitive 

sciences. This includes work on learning the structure of the environment (Friston et al., 2023; also see Hasson 

et al., 2020), meta learning (Lake and Baroni, 2023) or so-called “meta-learned models of cognition” (Binz et 

al, 2023), as well as inductive reasoning by humans and AI (Bhatia, 2023), and inferential learning (Dasgupta et 

al., 2020). Many of these models of learning build on neural networks in various forms, as well as related 

approaches.  

Now, our overall purpose is not to review the exhaustive details of these models and their underlying 

architectures, particularly as excellent reviews can be found elsewhere (e.g., Aggarwal, 2018; Russell and 

 
3 While these models emerged seemingly out of nowhere, it is important to understand that the foundations were laid 
decades ago (Buckner, 2023). 
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Norvig, 2022; Goodfellow et al., 2016). Rather, in the above we simply seek to offer a high-level overview of 

these models of AI—from the 1950s to the present—and their links to human cognition and mind. In all of 

this work, cognition and computation (and AI) are seen as deeply connected: the underlying premise of this 

work is that machines and humans are a form of input-output device, where the same underlying mechanisms 

of information processing and learning are at play. The focus on computation and information processing also 

is the axiomatic basis for the concept of bounded rationality (for a review, see Felin, Koenderink, and 

Krueger, 2017). Bounded rationality is focused on human “computational capacities” and their limits (Simon, 

1955: 99)—and this idea has deeply shaped fields such as economics, decision theory, strategy, and the 

cognitive sciences (e.g., Chater et al., 2018; Gigerenzer and Goldstein, 2024; Kahneman, 2003; Puranam et al., 

2015).   

In all, we disagree with the idea that AI and human cognition share significant similarities as forms of 

computation, for reasons to be discussed next. That said, our aim in making this claim is not to take away from 

the exciting breakthroughs in AI. Rather, we highlight how the analogy between AI and humans quickly 

breaks down when it comes to understanding the mind and cognition, with important derivative consequences 

for how we think about judgment, strategy, and decision making under uncertainty. In the next section we 

delve into a specific example, namely language learning by machines versus humans, to enable us to make this 

point more carefully. 

MACHINE VERSUS HUMAN LEARNING: DIFFERENT INPUTS, DIFFERENT OUTPUTS 

While the input-output model of minds and machines—whether we are talking about symbolic or 

subsymbolic approaches—has been a central thesis of AI and cognitive science, next we highlight some 

important differences between machine learning and human learning. An apt context for highlighting these 

differences is to focus on language. Language arguably is “the most defining trait of human cognition 

(language and its relation with thought)” and therefore it “can be a true ‘window into the mind’ ”(Chomsky, 

2020: 321; also see Pinker, 1994).4 Language provides an important “test” and context for understanding 

human and artificial intelligence. Furthermore, some have already argued that large language models are 

 
4 Recent comparisons between large language models (LLMs) and humans have revealed intriguing insights into their 
formal versus functional linguistic competence. In humans these two forms of competence rely on different neural 
mechanisms (Mahowald et al., 2024).   
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sentient, with a few even arguing that they already closely mirror or exceed human cognition (e.g., Binz and 

Schulz, 2023; Hinton, 2023)—an assumption which we challenge. 

At the most basic level, to study any system and its behavior we need to understand its inputs and 

outputs. Alan Turing (1948) argued that any form of intelligence, whether human or machine, can be studied 

as an input-output system. In discussing the possibilities of artificial intelligence—or “intelligent machinery” as 

he called it—Turing made the analogy to an “untrained infant brain.” An infant brain is largely a blank slate, 

“something like a notebook” with “little mechanism, and lots of blank sheets” (1950: 456, emphasis added; cf. 

Turing, 1948). According to Turing, these blank sheets are (or need to be) filled with inputs via the process of 

training and education. Through the early course of its life, an infant or child is taught and receives inputs in 

the form of language and spoken words that it hears and encounters. Education and training represent the 

inputs that eventually account for human linguistic capacities and outputs. And in the same way, Turing 

argues, one can think of an “analogous teaching process applied to machines” (1948: 107), where machines 

learn from their inputs. Turing lists various settings in which a thinking machine might show that it has 

learned—including games like chess or poker, cryptography, or mathematics—and he argues that “learning of 

languages would be the most impressive, since it is the most human of these activities” (Turing, 1948: 117). As 

human and machine learning are often seen as a similar process, we next focus on key differences using 

language learning as our example. We then highlight the implications of these differences in learning for 

decision making and knowledge generation both in scientific and economic contexts. 

How Machines Learn Language 

To illustrate the process of machine learning, next we carefully consider modern large language 

models (LLMs) and how they learn. LLMs offer a useful instantiation of machine learning. Learning is 

essentially generated from scratch—bottom up, directly from the data—through the introduction of vast 

amounts of training data and the algorithmic processing of the statistical associations and interactions amongst 

that data. In the context of an LLM, the training data is composed of enormous amounts of words and text, 

pulled together from various public sources and the Internet. To appreciate just how much data and training 

these models incorporate, the latest LLMs (as of early 2024) are estimated to include some 13 trillion tokens (a 

token being the rough equivalent of a word). To put this into context, if a human tried to read this text—say 
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at a speed of 9,000 words/hour (150 words/minute)—it would take over 164,000 years to read the 13 trillion 

words of a training dataset. 

The vast corpus of text used to train an LLM is tokenized to enable natural language processing. This 

typically involves converting words (or sub-word units or characters) into numerical sequences or vectors. To 

illustrate, a sentence like “The cat sat on the mat” might be tokenized into a sequence like [10, 123, 56, 21, 90, 

78]. Each token is passed through an embedding layer, which converts the token into a dense vector 

representation that captures semantic information, such as its frequency and positional embedding. The 

embedding layer has its own set of parameters (weights) that are learned during training. The attention 

mechanism introduced with the “transformer” architecture (Vaswani et al, 2017), touched on by us previously, 

allows the model to consider each token in context of all other surrounding tokens, thus to gain an 

understanding of the wider context. Deep artificial neural networks have turned out to be extremely general 

and applicable not just to text but varied domains like image recognition and computer vision, including multi-

modal applications that combine various types of data.5   

From the vast data that serves as its training input, the LLM learns associations and correlations 

between various statistical and distributional elements of language: specific words relative to each other, their 

relationships, ordering, frequencies, and so forth. These statistical associations are based on the patterns of 

word usage, context, syntax, and semantics found within the training dataset. The model develops an 

“understanding” of how words and phrases tend to co-occur in varied contexts. The model does not just learn 

associations but also understands correlations between different linguistic elements. In other words, it discerns 

that certain words are more likely to appear in specific contexts.  

Now, while the above is not a technical introduction to LLMs, it offers the broad outlines of the 

process to the degree that it is relevant for our argument (for a detailed review, see Chang et al., 2024; Minaee 

et al., 2024; Naveed et al., 2023; also see Resnik, 2024). The end-result of this training is an AI model that is 

 
5 In terms of the training of an LLM, the tokenized words are submitted for algorithmic processing based on a 
predetermined sequence or input length. Sequence length is important because it allows the LLM to understand context. 
The (tokenized) text is not fed into the system as one long string but rather in chunks of predetermined length. This 
predetermined length is variously called the context window, input or sequence length, or token limit. Recent LLM 
models (as of early 2024) typically use input lengths of 2,048 tokens. (Newer models are exploring longer sequence 
lengths.) Therefore, a 13 trillion token training dataset is parsed into 2,048-length sequences, enabling the algorithm to 
learn language. Learning language is a statistical exercise where the LLM learns from the word patterns, context, and 
dependencies found in the training data. It then uses this learning to stochastically generate outputs through next-word 
prediction. 



 12 

capable of language: more specifically, the model is capable of generating fluent and coherent text by using a 

stochastic approach of “next-word prediction” in response to a prompt. Based on this broad outline of how 

an LLM is trained, we compare this to how humans learn language. We should reiterate, as discussed at the 

outset of this article, that the basic premise behind models of AI is that there is a symmetry between how 

machines and humans learn. We think it is important to carefully point out differences, as these provide the 

foundation for our subsequent arguments about cognition and decision making. 

How Humans Learn Language, Compared to Machines 

The differences between human and machine learning—when it comes to language (as well as other 

domains)—are stark. While LLMs are introduced to and trained with trillions of words of text, human 

language “training” happens at a much slower rate. To illustrate, a human infant or child hears—from parents, 

teachers, siblings, friends, and their surroundings—an average of roughly 20,000 words a day (e.g., Gilkerson 

et al., 2017; Hart and Risley, 2003). So, in its first five years a child might be exposed to—or “trained” with—

some 36.5 million words. By comparison, LLMs are trained with trillions of tokens within a short time interval 

of weeks or months.6  

The inputs differ radically in terms of quantity (sheer amount), but also in terms of their quality.7  

Namely, the spoken language that an infant or young child is (largely) exposed to is different from the written 

language on which an LLM is trained on. Spoken language differs significantly from written language in terms 

of its nature, structure, and purpose. Here the research on the differences between spoken and written 

language is highly instructive (e.g., Biber, 1991). Spoken language is spontaneous (not meaningfully edited), 

informal, repetitive, and often ephemeral. Written language—on the other hand—is visual and permanent, 

more carefully crafted, planned, and edited. It is also denser, featuring more complex vocabulary (e.g., 

Halliday, 1989; Tannen, 2007). More importantly, the functional purposes and uses of spoken versus written 

 
6 For an infant to be exposed to the same 13 trillion tokens represented by the training of current LLMs, it would take or 
roughly 1.8 million years. 
7 Of course, an infant is not just “trained” through the language it might be exposed to by auditory means, but also 
through other modalities and systems (including visual, olfactory, gustatory, and tactile ones). LLMs are largely 
monomodal, though various multimodal models of AI are of course in development. But setting aside questions of 
multimodality or even the “amount” of text or information that a system might be trained with, there are also deeper 
questions. That is, how humans are able to learn from the things they encounter in the first place, and what they learn (or 
what humans notice in the first place), is a key puzzle. Undoubtedly the biological nature and evolutionary history of 
humans is central to understanding these types of questions, as is the associated ability of humans—as we emphasize in 
this paper—to engage with their surroundings in novel and forward-looking ways.  
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language differ significantly. Spoken language is immediate, interactive, focused on coordinating, expressing, 

and practically doing things. While written language also serves these purposes, the emphasis is more on the 

communication of complex information. The vast bulk of the training data of the LLM is not conversational 

(for models trained on spoken language or “raw audio,” see Lakhotia et al., 2022). Rather, written language is 

more carefully thought-out. An LLM is likely to be trained with the works of Shakespeare and Plato, academic 

publications, public domain books (e.g., from Project Gutenberg), lyrics, blog posts, news articles, and so 

forth. This data is far “cleaner,” far more correct grammatically, and organized. Arguably the inputs received 

by an LLM—in the form of written, edited and published text—are linguistically far superior. In a statistical 

sense, LLM training data contains less “noise” and thus offers greater predictive power. Even the vast stores 

of Wikipedia articles that are included in most LLM training datasets are the end result of thousands of edits 

to ensure readability, accuracy, and flow.  

Clearly humans learn language under different conditions and via different types of inputs. In short, it 

can readily be argued that the human capacity for language develops differently from how machines learn 

language in both quantity and quality. Humans (somehow) learn language from extremely sparse, 

impoverished, and highly unsystematic inputs and data (Chomsky, 1975). Compared to LLMs, human 

linguistic capabilities are radically “underdetermined” by the inputs. That is, the relatively sparse linguistic 

inputs can scarcely account for the radically novel outputs generated by humans.8 

Beyond the quantitative and qualitative differences in inputs (when it comes language learning by 

LLMs versus humans), it is important to compare the linguistic outputs and capabilities of machines versus 

humans. In terms of output, LLMs are said to be “generative” (the acronym GPT stands for “generative 

pretrained transformer”). But in what sense are LLMs generative? They are generative in the specific sense 

that they are able to create novel outputs by probabilistically sampling from the vast combinatorial possibilities 

 
8 This logic is aptly captured by Chomsky: “One can describe the child’s acquisition of knowledge of language as a kind of 
theory construction. Presented with highly restricted data, he constructs a theory of language of which this data is a sample 
(and, in fact, a highly degenerate sample, in the sense that much of it must be excluded as irrelevant and incorrect—thus the 
child learns rules of grammar that identify much of what he has heard as ill-formed, inaccurate, and inappropriate). The child’s 
ultimate knowledge of language obviously extends far beyond the data presented to him. In other words, the theory he has in 
some way developed has a predictive scope of which the data on which it is based constitute a negligible part. The normal use 
of language characteristically involves new sentences, sentences that bear no point-by-point resemblance or analogy to 
those in the child’s experience (1975: 179, emphasis added).” Our goal is not to endorse Chomsky’s theory of universal 
grammar. Rather, we concur with this specific quote in terms of its characterization of the input-output relationship, 
where human linguistic outputs are underdetermined by the inputs children receive. Broadly this also links to the 
alternative approach that we focus on (the theory-based view of cognition), discussed in the second half of the paper.   
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in the associational and correlational network of word frequencies, positional encodings, and co-occurrences 

encountered in the training data (Vaswani, 2017).9 The LLM is generative in the sense that the text that is 

produced is not simply plagiarized or copied verbatim from existing sources contained in the pretraining data 

(McCoy et al., 2023). In the process of generating text, the parameters (weights and biases) determine how 

much influence different parts of the training data probabilistically have on the output. For example, in a 

sentence completion task, the weights—developed from the corpus of the training data—help the model 

decide which words are most likely to come next, based on the context provided by the input. The output is 

statistically derived from the training data’s underlying linguistic structure. The outputs therefore have 

compositional novelty (in terms of novel ways of saying the same thing—more on this below), and they also 

manifest some analogical generalization (McCoy et al., 2023). That said, any assessment of how “good” an 

LLM is needs to recognize “the problem that [LLMs] were trained to solve: next-word prediction” (McCoy et 

al., 2023). And as next-word prediction engines, LLMs certainly demonstrate exceptional capabilities.  

BEYOND MIRRORING: CAN AI GENERATE GENUINE NOVELTY? 

 So far we have summarized the central elements of a particular AI system—an LLM—and compared 

it with humans. Next we further address whether an AI can be said to be “intelligent” and whether it can make 

forward-looking decisions and be used to generate genuine novelty. While our focus remains on LLMs, we 

extend our arguments to other forms of AI and cognitive approaches that focus on data and prediction. We 

concurrently raise central implications of these arguments to the question of decision making under 

uncertainty.  

AI: Intelligence and New Knowledge? 

As we have foreshadowed above, an AI like an LLM seems to “mirror” the inputs it has been trained 

with rather than meaningfully manifest some form of intelligence. But beyond next-word prediction and 

linguistic fluency, could an LLM do a better job than humans in decision making under uncertainty (e.g., 

 
9 Relative to the idea of next-word prediction (and the “draw” of the next word), there are different ways for this to 
happen. For example, a model might always pick the most likely next word (greedy). Or a model might explore multiple 
sequences simultaneously (beam search), along with many other approaches (top-k sampling, top-p sampling etc). In 
practice, different types of prompts (depending on prompt context, length, tone, style) lead to different types of sampling 
and next-word prediction (Holtzman et al., 2019), as will changing the “temperature” setting of the model.   
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Csaszar et al., 2024; cf. Kahneman, 2018)—or could an LLM perhaps even “automate” science and scientific 

reasoning itself (e.g., Manning et al., 2024)?10  

Certainly LLMs seem to manifest sparks of intelligence. But intelligence is not simply memorization, 

the ability to restate or paraphrase information in various ways. LLMs appear intelligent by capitalizing on the 

fact that the same thing can be stated, said, and represented in indefinite ways. This is readily illustrated by the fact that the 

revolutionary breakthrough that gave rise to LLMs—the transformer architecture—was developed in the 

context of language translation (Vaswani et al., 2017). Accordingly, LLMs can be seen as translation 

generalized. LLMs can be seen as generalized technology for translating one way of saying things into another way of 

saying the same thing. Translation after all is an effort to represent and accurately mirror something in a different 

way—to represent the same thing in a different language or with a different set of words, or more abstractly: 

to represent the same thing in a different format. LLMs serve this representational and mirroring function 

remarkably well. This representational and mirroring function from language to language is generalized to a 

process that takes one way of saying something and generates another way of saying the same thing. Stochastic 

next-word prediction—using the weights and parameters found in vast training datasets and probabilistically 

drawing from this training—allows for surprisingly rich combinatorial outputs. The learning of the LLM is 

embodied in the relationships found between words which are sampled to enable stochastic generativity, 

where the outputs mirror past inputs. But, as we will discuss, the fluency with which LLMs seem to generate 

outputs dupes us into seeing them as intelligent—as if they are engaging in far more than mere translation. 

With vast data, an LLM is good at fluently predicting the next word. 

Before revisiting our question of whether an AI like an LLM could actually engage in some form of 

forward-looking decision making, it is worth highlighting metaphorical similarities between AI and cognitive 

architectures based on prediction. For example, consider a cognitive approach like predictive processing 

(Pezzulo, Parr and Friston, 2024: a rough synonym for active inference, the free energy principle, the Bayesian 

 
10 AI can, of course, be (and has been) a powerful aid in scientific discovery. For example, modern AI techniques have 
analyzed astronomical datasets far more quickly and accurately than humans, helping identify new planets and celestial 
phenomena, as seen with Kepler's laws of planetary motion. Similarly, DeepMind's AlphaFold has revolutionized protein 
structure prediction, a critical task for understanding biological processes and developing new medications (e.g., Jumper et 
al., 2021). Yet it is important to state that in both of these cases AI is not somehow independently doing the science by 
forming hypotheses or conducting experiments, but that these hypotheses were provided by human scientists in the form 
of patterns and reward functions, respectively. AI has significantly accelerated research by enabling scientist to process 
large datasets and uncover novel patterns, allowing scientists to focus on hypothesis generation and experimental design 
rather than “number crunching.” 
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brain, and predictive coding). At a high level, both LLMs and predictive processing seek to engage in a similar 

process, namely, in error minimization and iterative optimization, where the systems are essentially navigating 

a high-dimensional space to find a state that minimizes both error and surprise. LLMs learn from the training 

data and predictive processing learns from its environment (cf. Hohwy, 2020). LLMs aim to reduce the 

difference between their predictions (the next word in a sentence) and the actual outcomes (the real next 

word), thereby improving their accuracy. Predictive processing, as a cognitive theory, posits that the brain 

continuously predicts sensory input and minimizes the error between its predictions and actual sensory input. 

The capability of each to predict—whether a word or a perception—is a function of past inputs. Large 

language models seek to predict the most likely next word—based on training data—and active inference 

seeks to predict the most likely next percept or action. Both approaches are seeking to reduce surprise—or 

prediction as “error minimization” (Hohwy, 2013).11 Back-propagation, a fundamental mechanism in training 

neural networks, and the concept of error minimization in predictive processing (Friston et al., 2009) share a 

broad conceptual similarity in that both involve iterative adjustments to minimize some form of error or 

discrepancy. Both create a prediction based on past inputs. Both back-propagation and error minimization in 

predictive processing involve adjusting an internal model (neural network weights in AI, and hierarchical brain 

models in neuroscience) to reduce error (or, in machine learning terms, minimize the loss function).  

With this architecture—focused on error minimization and surprise reduction—can an LLM or any 

prediction-oriented cognitive AI truly generate some form of new knowledge? Beyond memorizing, 

translating, restating, or mirroring the text with which it has been trained, can an LLM generate new 

knowledge?  

We do not believe LLMs or input-output based cognitive systems can do this, at least not beyond 

random flukes that might emerge due to their stochastic nature.12 There is no forward-looking mechanism or 

unique causal logic built into these systems. It is important to clearly delineate why this is the case, as some 

argue and anticipate that LLMs will replace human decision makers in uncertain contexts like strategy and 

even science itself. For example, Csaszar et al (2024) argue that “the corpora used to train LLMs encompass 

 
11 This leads to the problem of surprise and the famous “dark room” problem of predictive processing. For an attempt to 
deal with this, see Clark, 2018.  
12 Though we of course recognize that there is significant disagreement on this point (for example, related to AI versus 
human creativity, see Franceschelli and Musolesi, 2023). 
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information necessary for [strategic decision making], including consumer preferences, competitor 

information, and strategy knowledge” and point to how an AI can use various decision making tools to 

generate business plans and strategy (Csaszar et al., 2024). And Manning et al (2024) even argue that LLMs will 

“automate” social science given their seeming ability to generate hypotheses and causal models, including testing 

them.  

These claims are vastly overstated. One way to think about this is that a prediction-oriented AI like an 

LLM can essentially be said to possess “Wikipedia-level” knowledge. On any number of topics (if contained in 

the training data), an LLM can summarize, represent, and mirror the words they have encountered in various 

different and new ways. On any given topic—again, if sufficiently represented in the training data—an LLM 

could generate indefinite numbers of coherent, fluent, and well-written Wikipedia articles. But just as a 

subject-matter expert is unlikely to learn anything new about their specialty from a Wikipedia article within 

their domain of expertise, so an LLM is unlikely to somehow bootstrap knowledge beyond the combinatorial 

possibilities of the word associations it has encountered in the past.  

There is also good evidence that suggests that when an LLM encounters (is prompted with) a 

reasoning task, it merely reproduces the linguistic answers (about reasoning) it has encountered in the training 

data rather than engaging in any form of actual, on-the-fly reasoning. If the wording of a reasoning task—like 

the Wason selection task or the Monty Hall problem—is changed only slightly, LLM performance declines 

significantly below human performance, where the mistakes of the LLM are glaringly obvious to humans (e.g., 

Hong et al., 2024; Macmillan and Musolesi, 2024). LLMs are not meaningfully engaged in any form of real-

time reasoning themselves (as seemingly assumed by Manning et al., 2024 and many others), rather they are 

merely repeating the word structures associated with reasoning, which they have encountered in the training 

data. Put differently, LLMs memorize the words associated with reasoning (in highly specific tasks) but are not 

engaged in reasoning on-the-fly.13 This is why Francois Chollet (2019) has created the “abstraction and 

reasoning corpus”—as a challenge or test to see if an AI system can actually solve new problems (ones it has 

 
13 The capabilities of AI are of course rapidly evolving and future developments are hard to anticipate. In this paper we 
have discuss AI in its past and current state—comparing it with human cognition—rather than speculate about what AI 
might be capable of in the future. It might be that the forms of human reasoning and cognition that we emphasize (and 
claim, in this paper, to be unique to humans) could be mimicked or replicated by future AI systems.  
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not encountered in its training data), without merely resorting to memorized answers and solutions 

encountered in the past (which captures the present state of AI systems including LLMs).14  

That said, our goal is not to dismiss the remarkable feats of LLMs, nor other forms of AI or 

applications of machine learning. The fact that an LLM can outperform most humans in varied types of tests 

and exams is remarkable (Achiam et al., 2023). But this is because it has encountered this information and 

memorized it. An LLM has a superhuman capacity for memorization, and an ability to summarize memorized 

word structures in diverse, fluent, and novel ways. In all, certainly the idea of LLMs as “stochastic parrots” or 

“glorified auto-complete” (Bender et al., 2021) underestimates their ability. But equally, ascribing LLMs the 

ability to actually reason and generate new knowledge vastly overestimates their ability. 

We might concur that LLMs are powerful and creative “imitation engines” (in stochastically 

assembling words), though not linguistically innovative compared to children (see Yiu, Kosoy, and Gopnik, 

2023). The idea that LLMs somehow generate new-to-the-world knowledge—or feature something like 

human consciousness—seems to be a significant stretch (though, see Butlin et al., 2023; Hinton, 2023). In 

sum, the generativity of these models is a type of “lower-case-g” generativity that shows up in the form of the 

unique sentences that creatively summarize and repackage existing knowledge.  

To illustrate the problem of generating new knowledge with an LLM, imagine the following thought 

experiment. Imagine an LLM in the year 1633, where the LLM’s training data incorporated all the scientific 

and other texts published by humans to that point in history. If the LLM were asked about Galileo’s 

heliocentric view, how would it respond? Since the LLM would probabilistically sample from the association 

and correlation-based word structure of its vast training data—again, everything that has so far been written 

(including all the scientific writings about the structure of the cosmos)—it would only restate, represent, and 

mirror the accumulated scientific consensus. The training dataset would overwhelmingly feature texts with word 

structures supporting a geocentric view, in the form of the work of Aristotle, Ptolemy, and many others. 

Ptolemy’s careful trigonometric and geometric calculations, along with his astronomic observations, would be 

included in support of a geocentric view, as represented in the many texts that would have summarized the 

 
14 Beyond the ability of a human or AI to solve previously-unseen, new problems (which is the focus of Chollet’s ARC 
challenge), there is an even higher form of intelligence in being able to specify and formulate problems in the first place 
(Felin and Zenger, 2017). This is a skill that is manifest in humans—in theorizing and causal reasoning—but not evident 
in AI. As we discuss later, it was the ability of the Wright brothers to formulate the right problems (lift, propulsion, and 
steering) that enabled them to then identify the right data, specific forms of experimentation and relevant solutions.  
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geocentric view (like de Sacrobosco’s popular textbook De saphera mundi). These texts would feature word 

associations that highlight how the motions and movements of the planets could be predicted with remarkable 

accuracy with the predominant geocentric view. The evidence—as inferred from the repeated word 

associations found in the training data—would overwhelmingly be against Galileo. LLMs do not have any way 

of accessing truth (for example through experimentation or counterfactuals) beyond mirroring and restating 

what is found in the text.  

Even if alternative or heretical views were included in the training data (like the work of Copernicus, 

even though his work was largely banned), the logic of this work would be dwarfed by all the texts and 

materials that supported the predominant geocentric paradigm.15 The overwhelming corpus of thousands of 

years of geocentric texts would vastly outweigh Galileo’s view—or anything supporting it. An LLM’s model of 

truth or knowledge is statistical, relying on frequency of probability. Outputs are influenced by the frequency with which 

an idea is mentioned in the training data, as reflected by associated word structures. For example, the 

frequency with which the geocentric view has been mentioned, summarized, and discussed in the training data 

necessarily imprints itself onto the output of the LLM as truth. As the LLM has no actual grounding in 

truth—beyond the statistical relationships between words—it would say that Galileo’s view and belief is 

delusional and in no way grounded in science.  

A neural network like an LLM might in fact include any number of delusional beliefs, including 

beliefs that turned out to eventually be correct (like Galileo’s), but also beliefs that objectively were (and still are) 

delusional. Ex ante there is no way for an LLM to arbitrate between the two. For example, the eminent 

astronomer Tyco Brahe made and famously published extensive claims about astrology, the idea that celestial 

bodies and their movement directly impact individual human fates as well as political and other affairs. His 

astrological writings were popular not just among some scientists, but also among the educated elite. A 

hypothetical LLM (in 1633) would have no way of arbitrating between Galileo’s (seeming) delusions about 

heliocentrism nor Brahe’s (actual) delusions about astrology. The LLM would argue against heliocentrism and 

for astrology. The LLM can only represent and mirror the predominant and existing conceptions—in this 

 
15 While Copernicus’s On the Revolution of the Heavenly Spheres was published in 1543, the theory contained within the book 
represented a fringe view within science. Given the fringe nature of the Copernican view, his book was withdrawn from 
circulation and eventually censored (Gingerich and Maclachlan, 2005).  
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case, the support for the geocentric view of the universe—it finds in the frequencies and statistical association 

of words in its training data.  

In sum, it is important to recognize that the way an LLM gets at truth and knowledge is via a 

statistical exercise of finding more frequent mentions of a true claim (in the form of statistical associations 

between words) and less frequent mentions of a false claim. LLM outputs are stochastically or probabilistically 

drawn from the statistical associations of words in the training data. When an LLM makes truthful claims, 

these are an epiphenomenon of the fact that true claims happened to have been made more frequently in the 

training data. There is no other way for the LLM to assess truth or reason. Truth emerges as a byproduct of 

statistical patterns and frequencies rather than from the LLM developing an intrinsic understanding of—or 

ability to bootstrap or reason—what is true or false in reality.  

Some LLMs have sought to engineer around the problem of their frequency-based and probabilistic 

approach by creating so-called “mixture of experts” models where the outputs are not simply the “average” 

result of “outrageously” large neural networks, but can be fine-tuned toward some forms of expertise (Du et 

al., 2023; Shazeer et al., 2017). Another approach is retrieval-augmented generation, which uses the general 

linguistic abilities of the LLM but limits the data used for prediction to a confined and pre-selected set of 

sources (Lewis et al., 2020). Furthermore, ensemble approaches—which combine or aggregate diverse 

architectures or outputs—have also been developed (Friedman and Popescu, 2008; Russell and Norvig, 2022). 

However, even here the outputs would necessarily also be reflective of what any particular experts have said 

within the specified data, rather than any form of forward-looking projection or on-the-fly causal reasoning on 

the part of the LLM. This problem is further compounded in situations that are characterized by high levels of 

uncertainty and novelty (like many forms of decision making), where the idea of expertise or even bounded 

rationality is hard to specify given an evolving and changing world (Felin, Kauffman, Koppl and Longo, 2014). 

Finally, it is critically important to keep in mind that the inputs of any LLM are past human inputs, 

and therefore outputs also roughly represent what we know so far. Inherently an LLM cannot go beyond the 

realms covered by the inputs. There is no mechanism to somehow bootstrap forward-looking beliefs about 

the future—nor causal logic or knowledge—beyond what can be inferred from the existing statistical 

associations and correlations found in the words in the training data.  
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The Primacy of Data versus Data-Belief Asymmetry 

The central problem we have highlighted, so far, is that learning by machines and AI is necessarily 

backward-looking and imitative. Again, this should not be read as a critique of these models, rather, merely as 

a description of their structural limits. While they are useful for many things, an AI model—like an LLM—is 

not able to generate new knowledge or solve new problems. An LLM does not reason. And an LLM has no 

way of postulating beyond what it has encountered in its training data. Next we extend this problem to the 

more general emphasis on the primacy of data within both AI and cognitive science. Data itself of course is 

not the problem. Rather, the problem is that data is used in theory-independent fashion (cf. Anderson, 2007). 

To assure the reader that we are not caricaturing existing AI-linked models of cognition by simply focusing on 

LLMs, we also extend our arguments into other forms of cognitive AI.  

The general emphasis on minds and machines as input-output devices places a primary emphasis on 

data. This suggests a model where data—such as cues, stimuli, text, images—essentially are “read,” learned 

and represented by a system, whether it is human or computational one. The world (any large corpus of 

images, text, or the environment) has a particular statistical and physical structure, and the goal of a system is 

to accurately learn from it and reflect it. This is said to be the very basis of intelligence. As put by Poldrack, 

“any system that is going to behave intelligently in the world must contain representations that reflect the structure of 

the world” (2021: 1307, emphasis added; cf. Yin, 2020). Neural network-based approaches and machine learning—

with their emphasis on bottom-up representation—offer the perfect mechanism for doing this, because they 

can “learn directly from data” (Lansdell and Kording, 2019; also see Baker et al., 2022). Learning is data-

driven.16 Of course, systems may not be able to learn perfectly, but an agent or machine can “repeatedly 

interact with the environment” to make inferences about its nature and structure (Binz et al., 2023). This is the 

basis of “probabilistic models of behavior” which view “human behavior in complex environments as solving 

a statistical inference problem” (Tervo, Tenenbaum, and Gershman, 2021).17  

 
16 The problems with this approach have not just been discussed by us. For example, Yin, 2020 for related points in the 
field of neuroscience. 
17 In the context of machine learning, it is interesting that while the approach is said to be “theory-free” (to learn directly 
from data), nonetheless the architects of these machine learning systems are making any number of top-down decisions 
about the design and architecture of the algorithms, and how the learning occurs and the types of outputs that are valued. 
These decisions all imply mini-theories of what is important—a point that is not often recognized (cf. Rudin, 2019). This 
involves obvious things like choice of data, model architecture, and hyperparameter settings, but also loss functions and 
metrics, regularization and generalization techniques, valued outputs, type of human reinforcement, and so forth.  
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Bayesian cognition also posits that learning by humans and machines can be understood in terms of 

probabilistic reasoning about an environment, as captured in Bayesian statistical methods (e.g., Griffiths et al., 

2010). This framework conceptualizes sensory inputs, perceptions, and experiential evidence as data, which are 

continuously acquired from the environment and then used to update one’s model of the world (or of a 

particular hypothesis). The cognitive process involves sampling from a probability distribution of possible 

states or outcomes, informed by incoming data. Crucially, Bayesian and related approaches to cognition 

emphasize the dynamic updating of beliefs—where prior knowledge (priors) is integrated with new evidence 

to revise beliefs (posterior), in a process mathematically described by the Bayesian formula (Pinker, 2021). This 

iterative updating, reflecting a continual learning process, acknowledges and quantifies uncertainty, framing 

understanding and decision making as inherently probabilistic. This probabilistic architecture is (very broadly) 

also the basis of large swaths of AI and the cognitive sciences.  

It is worth reflecting on the epistemic stance, or underlying theory of knowledge, that is presumed 

here. Knowledge is traditionally defined as justified belief—and a belief is justified by data and evidence. As 

suggested by Bayesian models, we believe or know things to the extent to which we have data and evidence 

for them (Pinker, 2021). Beliefs should be proportionate to the evidence at hand, because agents are better off 

if they have an accurate representation or conception of their environment and the world (e.g., Schwöbel et al., 

2018).18 Knowledge can be seen as the accumulated inputs, data and evidence that make up our beliefs. And 

the strength or degree of any belief should be symmetrical with the amount of supporting data, or put differently, 

the weight of the evidence (Pinker, 2021; also see Dasgupta et al., 2020; Griffin and Tversky, 1992; Kvam and 

Pleskac, 2016). This is the basis of probabilistic models of cognition. These approaches focus on “reverse-

engineering the mind”—from inputs to outputs—and “forges strong connections with the latest ideas from 

computer science, machine learning, and statistics” (Griffiths et al., 2010: 363). Overall, this represents a 

relatively widely-agreed upon epistemic stance, which also matches an input-output-oriented “computational 

theory of mind” (e.g., Rescorla, 2015) where humans or machines learn “through repeated interactions with an 

environment”—without “requiring any a priori specifications” (Binz et al., 2023). One way to summarize the 

above literature is that there needs to be a symmetry between one’s belief and the corroborating data. A 

 
18 The predictive processing and active inference approach has many of these features (e.g., Parr and Friston, 2017) 
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rational decision maker will form (and weight) their beliefs about any given thing by taking into account the 

available data and evidence (Pinker, 2021). 

But what about “edge cases?” That is, what about situations where an agent correctly takes in all the 

data and evidence yet somehow turns out to be wrong? Models based on rational information processing do 

not offer a mechanism for explaining change or new knowledge, nor an explanation of situations where data 

and evidence-based reasoning might lead to poor outcomes (cf. Felin and Koenderink, 2022). While learning-

based models of knowledge enable “belief updating”—based on new data—there is no mechanism for explaining 

where new data comes from, or what data should be considered as relevant and what data should be ignored. And 

what if the data and evidence are contested? This is a particularly significant problem in contexts that feature 

rampant uncertainty, including any type of forward-looking decision making and scientific reasoning. 

These situations are highly problematic for computational, input-output models of cognition that 

assume what we call data-belief symmetry. The basis of knowledge is the quest for truth (Pinker, 2021), which is 

focused on existing evidence and data. But we argue that data-belief asymmetry in fact is essential for the 

generation of new knowledge and associated decision making. The existing literature in the cognitive sciences 

has focused on one side of the data-belief asymmetry, namely its downside—the negative aspects of data-belief 

asymmetry (e.g., Kunda, 1990; Scheffer et al., 2022). This downside includes all the ways in which humans 

persist in believing something despite seemingly clear evidence to the contrary (Pinker, 2021). This includes a 

large literature which focuses on human biases in information processing—the suboptimal and biased ways 

that humans process, perceive, and use data and fail to appropriately update their beliefs. This is evident in the 

vast literatures that focus on various data-related pathologies and biases, including confirmation bias, selective 

perception and sampling, and availability bias. The emphasis on erroneous beliefs and human bias has 

powerfully influenced how we think about human nature and decision making within various social and 

economic domains (e.g., Bordalo et al., 2024; Chater, 2018; Gennaioli and Shleifer, 2018; Kahneman, 2011; 

Kahneman et al., 2021). 

But what about the positive side of data-belief asymmetry? What about situations where beliefs 

appear delusional and distorted—seemingly contrary to established evidence and facts—but where these 

beliefs nonetheless turn out to be correct? Here we are specifically talking about beliefs that may outstrip, 

ignore, and go beyond existing evidence. Forward-looking contrarian views are essential for the generation of 
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knowledge. Due to the statistical nature of AI-based computational systems (focused on correlations, 

associations, and averages from past data), they are not able to project forward in contrarian ways, given the 

implicit insistence on symmetry between data and beliefs. That said, notice that—as we will discuss—our 

focus on data-belief asymmetries is not somehow data-independent or untethered from reality. Rather, this 

form of data-belief asymmetry is forward-looking, where beliefs enable the identification of new data and 

experimental interventions, and the eventual verification of beliefs that previously were seen as the basis of 

distortion or delusion.  

To offer a practical and vivid illustration of how data-belief symmetry can be problematic, consider 

the beliefs that were held about the plausibility of “heavier-than-air” human, powered, and controlled flight in 

the late 1800s and the early 1900s. (We introduce this example here and revisit it throughout the remainder of 

the manuscript.) To form a belief about the possibility of human powered flight—or to even assign it a 

probability—we would first want to look at the existing data and evidence. So, what was the evidence for the 

plausibility of human powered flight at the time? The most obvious datapoint at the time was that human 

powered flight was not a reality. This alone, of course, would not negate the possibility. So, one might want to 

look at all the data related to human flight attempts to assess its plausibility. Here we would find that humans 

have tried to build flying machines for centuries, and flight-related trials had in fact radically accelerated during 

the 19th century. All of these trials of flight could be seen as the data and evidence we should use to update our 

beliefs about the implausibility of flight. All of the evidence clearly suggested that a belief in human powered 

flight was delusional. A delusion can readily be defined as having a belief contrary to evidence and reality 

(Pinker, 2021; Scheffer, 2022): a belief that does not align with accepted facts. In fact, the DSM-4/5—the 

authoritative manual for mental disorders—defines delusions as “false beliefs due to incorrect inference about 

external reality” or “fixed beliefs that are not amenable to change in light of conflicting evidence.” 

Notice that many people at the time—naively, it was thought—pointed to birds as evidence for the 

belief that humans might also fly. This was a common argument.19 But the idea that bird flight somehow 

provided hope and evidence for the plausibility of human flight was seen as delusional by scientists and put to 

 
19 As captured by a prominent engineer at the time: “There probably can be found no better example of the speculative 
tendency carrying man to the verge of the chimerical than in his attempts to imitate the birds, or no field where so much 
inventive seed has been sown with so little return as in the attempts of man to fly successfully through the air” (Melville, 
1901: 820). 
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bed by the prominent scientist Joseph LeConte. He argued that flight was “impossible, in spite of the testimony of 

birds” (1888: 69). Like a good scientist and Bayesian, LeConte appealed to the data to support his claim. He 

looked at bird species—those that fly and those that do not—and concluded “there is a limit of size and 

weight of a flying animal.” Weight was the critical determinant of flight. With his data, LeConte’s pointed out 

that clearly no bird above the weight of 50 pounds is able to fly, and thus concluded that therefore humans 

cannot fly. After all, large birds like ostriches and emus are flightless. And even the largest flying birds—like 

turkeys and bustards—“rise with difficulty” and “are evidently near the limit” (LeConte, 1888; 69-76). Flight 

and weight are correlated. To this, Simon Newcomb—one of the foremost astronomers and mathematicians 

of his time—added that “the most numerous fliers are little insects, and the rising series stops with the condor, 

which, though having much less weight than a man, is said to fly with difficulty when gorged with food” 

(1901: 435).   

The emphasis that prominent scientists placed on the weight of birds to disprove the possibility of 

human powered flight highlights one of the problems with data. It is hard to know what data and evidence 

might be relevant for a given belief or hypothesis. The problem is—as succinctly put by Polanyi—that “things 

are not labeled evidence in nature” (1957: 31). What is the relevant data and evidence in this context? Did 

flight have something to do with weight, size, or with other features like wings? Did it have something to do 

with the “flapping” of wings (as Jacob Degen hypothesized)? Or did it have something to do with wing shape, 

wing size, or wing weight?20 Perhaps feathers were critical to flight. In short, it is hard to know what data 

might be relevant and useful.  

Of course, not all our beliefs are fully justified in terms of direct empirical data that we ourselves have 

verified. We cannot—nor would we want to—directly verify all the data and observations that underlie our 

beliefs and knowledge. More often than not, for our evidence we rightly rely on the expertise, beliefs, or 

scientific arguments of others, which serve as “testimony” for the beliefs that we hold (Coady, 1992; 

Goldman, 1999). The cognitive sciences have also begun to emphasize this point. Bayesian and other 

probabilistic models of cognition have introduced the idea of “the reliability of the source” when considering 

 
20 Even if LeConte happened to be right that the delimiting factor for flight was weight (which of course is not the case), 
he also did not take into account—or more likely, was not aware of—findings related to prehistoric fossils. For example, 
in the mid and late 1800s, scientific journals reported about the discovery of prehistoric fossils—pelagornis sandersi—
with wingspans of up to 20-24 feet and conjectures of a weight up to 130 pounds.  
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what data or evidence to use to update beliefs and knowledge (e.g., Hahn, Merdes, and Sydow, 2018; Merdes 

et al., 2021). This approach recognizes that not all data and evidence is equal. Who says what matters. For 

example, scientific consensus and expertise are an important source of beliefs and knowledge. 

This is readily illustrated by our discussion of heavier-than-air flight. So, what might happen if we 

weight our beliefs about the plausibility of human flight by focusing on reliable, scientific sources and 

consensus? In most instances, this is a rational strategy. However, updating our belief on this basis when it 

comes to heavier-than-air flight would further reinforce the conclusion that human powered flight was 

delusional and impossible. Again, scientists like LeConte and Newcomb argued that flight was impossible by 

pointing to seemingly conclusive data and evidence. And not only should we base our belief on the evidence, 

but we should also weight the belief by the fact that prominent scientists were making these claims. LeConte 

for example became the eventual President of the leading scientific association at the time, the American 

Association for the Advancement of Science. And LeConte was scarcely alone. He was part of a much broader 

scientific consensus that insisted on the impossibility of human powered flight. For example, Lord Kelvin 

emphatically argued—while serving as President of the British Royal Society—that “heavier-than-air flying 

machines are impossible.” This is ironic, as Kelvin’s scientific expertise in thermo- and hydrodynamics, the 

behavior of gases under different conditions (and other areas of physics) in fact features practical implications 

that turned out to be extremely relevant for human powered flight. And the aforementioned, prominent 

mathematician-astronomer Simon Newcomb (1901) also argued in the early 1900s—in his article, “Is the 

airship coming?”—that the impossibility of flight was a scientific fact, as there was no combination of physical 

materials that could be combined to enable human flight (for historical details, see Anderson, 2004; Crouch, 

2002).  

The question then is: how does someone still—despite seemingly clear evidence and scientific 

consensus—hold onto a belief that appears delusional? In the case of human flight, the data, evidence, and 

scientific consensus were firmly against the possibility. No rational Bayesian should have believed in heavier-

than-air flight. Furthermore, the evidence against it was not just empirical (in the form of LeConte’s bird and 

other data) and based on science and scientific consensus (in the form of Kelvin and Newcomb’s physics-

related arguments), but it also was observationally salient. Many aviation pioneers not only failed and were 

injured, but some also died. For example, in 1896, the German aviation pioneer Otto Lilienthal died while 
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attempting to fly, a fact that the Wright brothers were well acquainted with (as they subsequently studied his 

notebooks extensively). And in 1903—just nine weeks before the Wright brothers succeeded—the scientist 

Samuel Langley failed spectacularly in his attempts at flight, with large scientific and lay audiences witnessing 

the failures. Reporting on Langley’s flight attempts, the New York Times (1903) estimated that it would take the 

“combined and continuous efforts of mathematicians and mechanicians from one million to ten million years” 

to achieve human powered flight.  

We have of course opportunistically selected a historical example of a particular data-belief 

asymmetry where a seemingly delusional belief—one that went against existing data, evidence, and scientific 

consensus—turned out to be correct. Cognitive psychologists often engage in the “opposite” exercise where 

they point to situations where humans doggedly persist in holding delusional beliefs—despite clear evidence 

against those beliefs—due to biased information processing, selective perception or biased sampling of data 

(Festinger et al., 1956; Kahneman, 2011; Kunda, 1990; Pinker, 2021; though see Anglin, 2019). Clearly these 

types of biases exist and are problematic. However, again, we think that the other side of heterogeneous 

beliefs—beliefs that presently might appear delusional, but turn out to be correct—also needs to be explored. 

Our example of flight offers an instance of a far more generalizable process where data-belief asymmetries in 

fact are essential. Heterogenous beliefs and data-belief asymmetries are the lifeblood of new ideas, new forms 

of experimentation, and new knowledge—as we discuss next.  

THEORY-BASED CAUSAL LOGIC AND COGNITION 

Building on the aforementioned data-belief asymmetry, next we discuss the cognitive and practical 

process by which humans engage in forward-looking theorizing and causal reasoning that enables them to, in 

essence, go “beyond the data”—or more specifically, to go beyond existing data, to experiment and produce 

new data and novelty. We specifically highlight how this form of cognitive and practical activity differs from 

computational, data-driven, and information processing-oriented forms of cognition—the hallmarks of AI and 

computational AI we discussed above—and allows humans to “intervene” in the world in forward-looking 

fashion. Approaches that focus on data-driven prediction take and analyze the world as it is without 

recognizing the human capacity to experiment and to understand why (cf. Pearl and Mackenzie, 2018)—and to 

realize beliefs that presently seem implausible due to the (present) lack of data and evidence. We extend the 
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example of heavier-than-air flight to offer a practical example of this point, in an effort to provide a unique 

window into a more generalized and ubiquitous process of what we call “theory-based causal logic.”  

Our foundational starting point—building on Felin and Zenger (2017)—is that cognitive activity is a 

form of theoretical or scientific activity.21 That is, humans generate forward-looking theories that guide their 

perception, search, and action. As noted by Peirce, the human “mind has a natural adaptation to imagining 

correct theories of some kinds (…). If man had not the gift of a mind adapted to his requirements, he could 

not have acquired any knowledge” (1957: 71). As highlighted by our example of language, the meager 

linguistic inputs of a child can scarcely account for the vast outputs, thus pointing to a human generative 

capacity to theorize. The human capacity to theorize—to engage in novel problem solving and 

experimentation—has evolutionary origins and provides a highly plausible explanation for evolutionary leaps 

and the emergence of technology (Felin and Kauffman, 2023).  

Importantly, theory-based cognition enables humans to do things. This is also the basis of the so-

called “core knowledge” argument in child development (e.g., Carey and Spelke, 1996; Spelke et al., 1992). 

Humans develop knowledge like scientists, through a process of conjecture, hypothesis, and experimentation. 

While computational approaches to cognition focus on the primacy of data and environmental inputs, the 

theory-based view of cognition focuses on the active role of humans in not just learning about their 

surroundings but also their active role in experimentation, the generation of new knowledge, and innovation 

(Felin and Zenger, 2017). Without this active, generative, and forward-looking component of theorizing, it is 

hard to imagine how knowledge would grow—whether we are talking about individual, collective, or scientific 

knowledge. This is nicely captured in the title of an article in developmental psychology: “If you want to get 

ahead, get a theory” (Karmiloff-Smith and Inhelder, 1974). This also echoes Kurt Lewin’s maxim, “there is 

nothing as practical as a good theory” (1943: 118). The central point here is that theories are not just for 

scientists. Theories are pragmatically useful for anyone seeking to understand and influence their 

 
21 A central aspect of this argument—which we unfortunately do not have room to explicate in this paper—is that 
humans are biological organisms. The theory-based view builds on the idea that all organisms engage in a form of forward-
looking problem solving. A central aspect of this approach is captured by the biologist Rupert Riedl who argued that 
“Every conscious cognitive process will show itself to be steeped in theories; full of hypotheses” (1984: 8). To see the 
implications of this biological argument on human cognition—particularly in comparison to statistical and computational 
approaches—see Felin and Koenderink (2022; also see Roli et al., 2022; Jaeger et al., 2023). For the embodied aspects of 
human cognition, see Mastrogiorgio et al., 2022.  
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surroundings—theories help us do things. Theorizing is a central aspect of human cognitive and practical activity. 

Thus, as argued by Dewey, “the entities of science are not only from the scientist” and “individuals in every 

branch of human endeavor should be experimentalists” (1916: 438-442). We build on this intuition and extend 

it into new and novel domains, along with contrasting it with AI-informed models of cognition. 

The theory-based view—in the context of decision making and strategy—extends the above logic and 

emphasizes the importance of theorizing and theories in economic contexts, with widespread implications for 

cognition (Felin and Zenger, 2017). The central idea behind the theory-based view is that economic actors can 

(and need to) develop unique, firm-specific theories. Theories do not attempt to map existing realities, but 

rather to generate unseen future possibilities. In economics, a roughly similar idea has been captured under the 

idea of “reverse Bayesianism” (see Karni and Vierø, 2013). Theories can be seen as a mechanism for 

“hacking” competitive factor markets (cf. Barney, 1986), enabling economic actors to see and search the world 

differently. Awareness for new possibilities is cognitively developed top-down (Felin and Koenderink, 2022). 

Theories also have central implications for how to efficiently organize or govern the process of realizing 

something that is new (Wuebker et al., 2023). This approach has been empirically tested and validated (e.g., 

Agarwal et al., 2023; Camuffo et al., 2021; Novelli and Spina, 2022), including important theoretical extensions 

(e.g., Ehrig and Schmidt, 2022; Zellweger and Zenger, 2022).22 The practical implications of the theory-based 

view have also led to the development of managerial tools to assist startups, economic actors, and 

organizations in creating economic value (Felin, Gambardella, and Zenger, 2021).  

Our goal in this section of the paper is not to exhaustively review the theory-based view. Rather, our 

goal now is to further build out the cognitive aspects of the theory-based view, and to contrast these with 

backward-oriented, data-focused approaches to cognition and AI. We highlight how the human capacity for 

theorizing and causal reasoning differs from AI’s emphasis on data-driven prediction. A theory-based view of 

cognition allows humans to intervene in the world, beyond the given data—not just to process, represent, or 

extrapolate from existing data. Theories enable the generation of nonobvious data and new knowledge 

through experimentation. We highlight how our approach to cognition differs significantly from the 

arguments and prescriptions suggested by computational, Bayesian, and AI-inspired approaches to cognition. 

 
22 There are parallel literatures in strategy that focus on mental representations (e.g., Csaszar and Levinthal, 2016) and 
forward-looking search and representation (e.g., Gavetti and Levinthal, 2000; also see Gans, Stern and Wu, 2019). 
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It is important to carefully establish these differences, as AI-based and computational approaches—as 

extensively discussed at the outset of this paper—are said to replace human judgment and cognition (e.g., 

Kahneman, 2018).  

Data-Belief Asymmetry Revisited 

Heterogeneous beliefs provide the initiating impetus for the theory-based view of cognition. From 

our perspective, for beliefs to be a relevant concept for understanding cognition and decision making, beliefs 

do not necessarily—in the first instance—need to be based on data. We are specifically interested in forward-

looking beliefs, beliefs that presently lack evidence or even go against existing data. Forward-looking beliefs, then, 

are more in search of data rather than based on data. At the forefront of knowledge, data is an outcome of 

beliefs—coupled with action and experimentation—rather than beliefs being an outcome of existing data.  

The problem is that it is hard to ex ante distinguish between beliefs that indeed are delusional versus 

those that simply are ahead of their time. Data-belief asymmetry is critical in situations where data “lags” 

belief, that is, situations where the corroborating data simply has not yet been identified, found, or 

experimentally generated. In many cases, beliefs do not automatically verify themselves. Rather, more often 

than not they require some form of action and experimentation. The search for data in support of an 

uncommon, contrarian or discrepant belief necessarily looks like irrational motivated reasoning or 

confirmation bias (Kunda, 1990; cf. Hahn and Harris, 2014). To briefly illustrate, Galileo’s belief in 

heliocentrism went against the established scientific data and consensus, and even plain common sense. 

Geocentric conceptions of the universe were observationally well-established. And they were successful: they 

enabled precise predictions about the movement of planets and stars. Even everyday observation verified that 

the earth does not move and that the sun seemingly circles the earth. Galileo’s detractors essentially argued 

that Galileo was engaged in a form of biased, motivated reasoning against the Catholic Church, by trying to 

take humankind and the immovable Earth away from the center of God’s creation.  

Before discussing the actions associated with the realization of seemingly contrarian or delusional 

beliefs, it is worth emphasizing the important role of beliefs as motivators of action. Namely, the strength or 

degree of one’s belief can be measured by one’s likelihood to take action as a result of that belief (Ramsey, 

1931; also see Felin, Gambardella, and Zenger, 2021). By way of contrast, the degree or strength of belief, 

based on probabilistic or Bayesian models of cognition (cf. Pinker, 2021), is tied to existing data and the weight 
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of the available evidence (cf. Keynes, 1921), rather than the likelihood of taking action—a significant 

difference.  

Notice the implications of this in a context of our earlier example, human powered flight. Beliefs 

played a central role in motivating action on the part of aviation pioneers despite overwhelming data and 

evidence against those beliefs. In a sense, those pursuing flight did not appropriately update their beliefs. 

Much if not most of the evidence was against them, but somehow they still believed in the plausibility. One of 

the Wright brothers, Wilbur, wrote to the scientist and aviation pioneer Samuel Langley in 1899 and admitted 

that “for some years I have been afflicted with the belief that flight is possible. My disease has increased in severity 

and I feel that it will soon cost me an increased amount of money if not my life” (Wright and Wright, 1881-

1940, emphasis added). Wilbur clearly recognized that his belief about flight appeared delusional to others, as is 

evident from his many letters. But this belief motivated him to experiment and problem solve and to make the 

seemingly delusional belief a reality (only four short years later). Contrast the Wright brothers’ belief with the 

belief of Lord Kelvin, one of the greatest scientific minds of the time. When invited to join the newly-formed 

Aeronautical Society a decade earlier, Kelvin declined and said “I have not the slightest molecule of faith in 

aerial navigation.” Here Kelvin might have been channeling a scientific contemporary of his—the 

mathematician William Clifford—who argued that “it is wrong always, everywhere, and for anyone to believe 

anything on insufficient evidence” (2010: 79). Kelvin did not want to lend support to what he considered an 

anti-scientific endeavor. Without the slightest belief in the possibility of human flight, he naturally did not 

want to support anything that suggested human powered flight might be possible. But for the Wright brothers, 

the possibility of powered flight was very much a “live hypothesis” (James, 1967). Despite the data, they 

believed human flight might be possible, and took specific steps to realize their belief.  

This approach presents problems for the very idea of rationality (cf. Chater et al., 2018; Felin and 

Koenderink, 2022). After all, to be a rational human being, our knowledge should be based on evidence. 

Knowledge should be proportionate to the evidence at hand. In a strict sense, the very concept of beliefs is 

not even needed, as one can instead simply talk about knowledge—that is, beliefs justified by or proportionate 

to the evidence at hand. This is succinctly captured by Pinker who argues “I don’t believe in anything you have to 

believe in” (2021: 244). This seems like a reasonable stance. It is also the basis of Bayesian approaches where 

new data (somehow) emerges, and where we can update our beliefs and knowledge accordingly—providing us 
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an “optimal way to update beliefs given new evidence” (Pilgrim et al., 2024). This is indeed the implicit stance 

of cognitive approaches that focus on computational and probabilistic belief updating (e.g., Dasgupta et al., 

2020). 

But data-belief asymmetries—where existing data presently does not corroborate beliefs, or even goes 

against them—can be highly useful, even essential. They are the raw materials of technological and scientific 

progress. Data-belief asymmetries direct our awareness toward new data and possible experiments to generate 

the evidence to support a belief. Of course, the idea of “seeking-data-to-verify-a-particular-belief” is the very 

definition of delusion and a host of associated biases, including confirmation bias, motivated reasoning, cherry 

picking, denialism, and belief perseverance.23 To an outsider, this looks like the perfect example of “the bad 

habit of seeking evidence that ratifies a belief and being incurious about evidence that might falsify it” (Pinker, 

2021: 13; also see Hahn and Harris, 2014). Belief in human powered flight readily illustrates this, as there was 

plenty of evidence to falsify the Wright brothers’ belief in the plausibility of heavier-than-air flight. Holding an 

asymmetric belief seems to amount to “wishful thinking”, or “protecting one’s beliefs when confronted with 

new evidence” (Kruglanski, Jasko and Friston, 2020: 413; though see Anglin, 2019). The Wright brothers were 

continuously confronted with evidence that disconfirmed their belief, including Samuel Langley’s public 

failures with flight or the knowledge of Lilienthal’s failed attempts (and his death due to a failed flight 

attempt). But in these instances, ignoring the salient data and evidence—not updating beliefs based on 

seemingly strong evidence and even scientific consensus—turned out to be the correct course of action.  

Now, perhaps the examples we have discussed represent rare and exceptional instances—instances 

that we can only discuss ex post, once the delusional or veridical nature of the beliefs in question is actually 

known. But again, scientists largely point to negative side of data-belief asymmetry all the time, by emphasizing 

situations where evidence is irrationally ignored by humans (e.g., Bordalo et al., 2024; Chater, 2018; 

Kahneman, 2011; Pinker, 2021; Scheffer et al., 2022). We are emphasizing the other side of the equation, 

where the present data is (rightly) ignored, and where this leads to positive outcomes. Belief-data asymmetries 

 
23 In economics there has similarly been an emphasis on how beliefs lead to negative outcomes. For example, Gennaioli 
and Shleifer’s (2018) “theory of beliefs” focuses on beliefs that turn out to be delusional and are the result of poor 
judgment, biased information processing, and selective perception. In a related vein, Bordalo et al (2023) largely argue that 
humans are poor statisticians—selectively attending to and inappropriately weighting evidence and feedback—leading to 
suboptimal outcomes. Here we highlight discrepant beliefs that appear delusional and highly biased—to some, or even a 
majority, of actors—in the present, but turn out to be correct. Importantly, our theory is one of belief asymmetry rather than 
bounded rationality, bias, or information asymmetry (cf. Felin, Gambardella, Novelli and Zenger, 2024).  
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are important and they are central to human cognition. There are times when being (seemingly) irrational—

ignoring evidence, disagreeing about its interpretation, or selectively looking for the right data—turns out to 

be the correct course of action. Human powered flight of course is a particularly vivid illustration of this, 

though even more mundane forms of human behavior are fundamentally characterized by a similar process 

(Felin and Koenderink, 2022). Most important for present purposes, our argument is that beliefs have a causal 

role of their own and can be measured by our propensity to act on them (Felin et al., 2020; Ramsey, 1931). Of 

course, having beliefs or having a willingness-to-act on them does not assure us that they are true. But they are 

an important motivation for action (Ajzen, 1991; Bratman, 1987).24 And again, notice that our emphasis on 

beliefs should not be seen as an attempt to dismiss the importance of data. Rather, as we highlight next, we 

emphasize the role of beliefs and theory in directing awareness toward the relevant data or the relevant 

experiments for the generation of evidence. 

From Beliefs to Problem Solving and Experimentation 

The realization of beliefs is not automatic. A central aspect of beliefs is their propensity to lead to 

directed experimentation and problem solving. Beliefs enable actors to experiment, to generate or find novel 

data and solutions, which presently are hidden (Felin, Gambardella and Zenger, 2021). Put differently, if the 

current conditions of the world do not provide evidence to support the plausibility of a belief, agents can 

engage in directed experimentation and problem solving to realize their beliefs.  

Our view of cognition and action here is more generally informed by the idea that theorizing can 

guide humans to develop an underlying causal logic that enables us to intervene in the world (Pearl and 

Mackenzie, 2018). This intervention-orientation means that we do not simply take the world as it is, rather we 

counterfactually think about possibilities and future states, with an eye toward taking specific action, 

experimenting and generating the right evidence. This shifts the locus from backward-oriented information 

processing and prediction (where the data is given), to doing and experimentation (where the right data and 

evidence is identified or generated). This involves actively questioning and manipulating causal structures, 

allowing for a deeper exploration of “what if” scenarios. Counterfactual thinking empowers humans to probe 

 
24 Beyond the work of Ramsey, Ajzen, and Bratman mentioned above, there is of course a large literature on how beliefs 
motivate action. Our emphasis here is on the interaction between data and beliefs (and eventually, the role of theory-based 
causal logic), as this has manifest in computational, Bayesian and probabilistic forms of AI and cognition.   
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hypothetical alternatives and dissect causal mechanisms offering insights into necessary and sufficient 

conditions for an outcome (Felin, Gambardella, Novelli, and Zenger, 2024). This approach is significantly 

different from input-output and information processing-oriented models of AI and computational cognition, 

and various “data-driven” or Bayesian approaches to decision making. AI-based models of cognition largely 

focus on patterns based on past associations and correlations—prediction is based on past data. But these 

approaches lack an ability to understand underlying causal structures, hypothetical possibilities, and possible 

interventions (cf. Felin et al., 2020; Pearl and Mackenzie, 2018). This is the role of theory-based causal logic.  

A doing-orientation can be illustrated by extending our example of human powered flight. This 

example also aptly illustrates the difference between how data-oriented and evidence-based scientists thought 

about the possibility of human powered flight versus how more intervention-oriented and causal logic-based 

practitioners like the Wright brothers thought about it. To understand flight, the Wright brothers delved into 

the minutiae of why previous attempts at flight had not succeeded. While failed flight attempts and the death of 

Lilienthal (and others) were used by many as data to claim that flight was impossible, the Wright brothers 

looked at the specific reasons why these attempts had failed.25 And while scientists had used bird data to argue 

that human flight was impossible (due to weight) (e.g., LeConte, 1888; Newcomb, 1901), the Wright brothers 

paid attention to a different aspect of birds flight. Ironically, bird-related data—again, different aspects of it—

provided seeming evidence for both those advocating for and against flight. LeConte focused on the weight of 

birds, while the Wright brothers engaged in observational studies of the mechanics of bird flight and anatomy 

(why birds were able to fly), for example, carefully studying the positioning of bird wings when banking and 

turning.  

The key difference was that the Wright brothers—with their belief in the plausibility of flight—were 

building a causal theory of flying rather than looking for data that confirmed or disconfirmed whether flight was 

possible. The Wright brothers ignored the data and the scientific arguments of the naysayers. From the 

Smithsonian, the Wright brothers requested and received details about numerous historical flight attempts, 

including Otto Lilienthal’s records. The Wright brothers notes and letters reveal that they carefully studied the 

 
25 The Wright brothers respected Otto Lilienthal and carefully analyzed his data. Based on their own experimentation, 
they found that some of his data on “lift” overestimated lift coefficients. Lilienthal tested one wing shape while the Wright 
brothers experimented with various options. The Wright brothers constructed their own wind tunnel to gather 
aerodynamic data. Their tests led them to develop new lift, drag, and pressure distribution data, which differed from 
Lilienthal's findings. This data was critical in designing their successful aircraft. 
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flight attempts and aircraft of earlier pioneers like George Cayley, Alphonse Penaud, and Octave Chanute 

(Anderson, 2002; McCoullough, 2015; Wright and Wright, 1841-1940). They studied various aspects of past 

flight attempts: the types of airplanes used, details about wing shape and size, weather conditions, and 

underlying aerodynamic assumptions.  

All of this study led to the development of their own theory of flying. Their theory consisted not just 

of a contrarian belief, but the gradual specification of an underlying causal logic of flight, which included the 

articulation of the specific problems they needed to solve for human powered flight to be possible. The 

Wright brothers reasoned that it was essential to solve three problems related to flight—namely (a) lift, (b) 

propulsion, and (c) steering. To illustrate the power of developing a theory-based causal logic, and identifying 

specific problems to solve, coupled with directed experimentation, we briefly discuss how they addressed one 

of the problems, the problem of lift. 

In terms of lift, the Wright brothers understood that to achieve flight they needed a wing design that 

could provide sufficient lift to overcome the weight of their aircraft. Indeed, prominent scientists had argued 

that the prohibiting factor of human flight was weight (again, pointing to insect flight and the weight of those 

birds that fly and those that do not). The Wright brothers felt that the concern with weight was not 

insurmountable. Informed by their investigations into bird flight (and the flight attempts of others), they 

approached this problem through a series of experiments that included the construction and testing of various 

airfoils. Their experimentation was highly targeted and data-oriented, testing various wing shapes, sizes, and 

angles. They also quickly realized that not everything needed to be tested at scale and that their  experiments 

with lift could more safely and cost effectively be done in laboratory conditions. Thus they constructed their 

own wind tunnels. Targeted tests within these tunnels allowed the Wright brothers to learn the central 

principles of lift. They measured everything and kept meticulous track of their data—data that they generated 

through ongoing experimental manipulation and variation. This hands-on experimentation allowed them to 

collect data on how different shapes and angles of attack affected lift. By systematically varying these 

parameters and observing the outcomes, they were effectively employing causal reasoning to identify the 

conditions under which lift could be maximized. Their discovery and refinement of wing warping for roll 

control was a direct outcome of understanding the causal relationship between wing shape, air pressure, and 

lift. 
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The same processes of causal logic, experimentation, and problem solving were also central for 

solving propulsion and steering or control. And more generally, the Wright brothers were careful scientists in 

every aspect of their attempt to realize their belief in human powered flight. For example, to determine a 

suitable place for their flight attempts, they contacted the US Weather Bureau. They had established what the 

optimal conditions might be for testing flight. They needed four things: consistent wind (direction and 

strength), wide open spaces, soft or sandy landing surfaces, and privacy. They received several suggestions 

from the US Weather Bureau and chose Kitty Hawk, North Carolina for the site of their “real world” trial 

(Wright and Wright, 1881-1940). 

The Wright brothers’ approach to flight offers a useful case study and microcosm of how theory-

based causal logic enables belief-realization, even when beliefs seemingly are not supported by existing data, 

evidence, or science. Based on their extensive study and theorizing, the Wright brothers engaged in directed 

experimentation and problem solving—to solve the central problems of lift, propulsion and steering. Their 

approach exemplifies the application of causal logic to understand and manipulate the world. Their success 

was not just in achieving flight but in demonstrating how a systematic, intervention-based approach can 

unravel the causal mechanisms underlying complex phenomena and overcome the shortcomings of existing 

data.  

 As is implied by our arguments, we think the economic domain is replete with opportunities for those 

with asymmetric beliefs to develop theory-based causal logics and engage in directed experimentation and 

problem solving (Felin and Zenger, 2017). As we have argued, existing theories of cognition are overly 

focused on data-belief symmetry rather than data-belief asymmetry and how the latter enables the emergence 

of heterogeneity and the creation of novelty and value. Data-belief symmetry is inherent to AI-based models 

that focus on prediction based on past data. Next we further explore the implications of this argument for 

decision making under uncertainty and strategy. 

DISCUSSION: THE LIMITS OF PREDICTION FOR DECISION MAKING UNDER 
UNCERTAINTY 
 

As we have extensively discussed in this article, AI and the cognitive sciences use many of the same 

metaphors, tools, methods, and ways of reasoning about intelligence, rationality, and the mind. The prevailing 

assumption in much of the cognitive sciences is that the human mind is a computational, input-output system 
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(Christian and Griffiths, 2016). Computational and algorithmic systems emphasize the power of prediction 

based on past data. The centrality of prediction is echoed by one the pioneers of AI, Yann LeCun (2017), who 

argues that “prediction is the essence of intelligence.”  

Clearly the predictive capabilities of AI are powerful. But is prediction the central for decision making 

under uncertainty as well (that is, in unpredictable situations)? Many argue that this is the case (e.g., Davenport 

and Kirby, 2017, Kahneman, 2018). For example, in their widely-acclaimed book Prediction Machines: The Simple 

Economics of Artificial Intelligence—Agrawal, Gans, and Goldfarb emphasize that, stripped down to its essence, 

“AI is a prediction technology” (2022: 22-32). And the central claim of their book is that “prediction is at the 

heart of making decisions under uncertainty.” (2022: 7, emphasis added). One way to summarize our argument in 

this paper is that we disagree with the importance placed on prediction—particularly in the form it is manifest 

in AI—especially in situations of uncertainty. Since the emphasis on prediction is commonplace, it is worth 

carefully pinpointing why we disagree with the importance placed on prediction.  

When it comes to prediction, Agrawal et al’s argument might be summarized by pointing to a 

relatively common causal chain (of sorts), one that proceeds from data to information to prediction and to a 

decision, or in short: dataà informationàpredictionàdecision.26 They argue that “data provides the 

information that enables a prediction” and prediction in turn is “a key input into our decision making.” This 

causal chain—from data to information to prediction and decision—certainly has intuitive appeal and mirrors 

what AI systems are good at: taking in vast amounts of inputs and data, processing this information, and then 

making predictions that can be used to make decisions. In short, as emphasized by Agrawal et al (2022) and 

many others, data-driven prediction is at the heart of not just language models but AI more generally, and also 

placed center stage in cognition.  

But as we have highlighted throughout this paper, the problem is that data—data that is presently 

available or given—is not likely to be the best source of information and prediction when making forward-

looking decisions. Data is snapshot of the past. Even vast amounts of data are unlikely to somehow enable 

one to anticipate the future (see Felin, Kauffman, Koppl and Longo, 2014). What is needed is some 

mechanism for projecting into the future and identifying the relevant data and evidence, or experimentally 

 
26 This has parallels with the data-information-knowledge-wisdom or “DIKW” framework. For discussions of this see 
Felin, Koenderink, Krueger, Noble and Ellis, 2021, and Yanai and Lercher, 2020. 
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generating new data. This is the role of a theory, which is a critical element that is missing from data-first and 

prediction-oriented approaches to AI and cognition. We grant that for various routine and repetitive decisions, 

prediction undoubtedly is a useful tool. Data-based prediction can be highly powerful in predictable situations, 

situations that match or extrapolate from the past. This matches what AI and prediction-based cognition is 

really good at, namely, the minimization of surprise and reduction of error. More broadly this also matches the 

strong emphasis that many scholars of judgment and decision making put on “consistency”—and the 

eagerness to avoid noise (Kahneman, Sibony and Sunstein, 2021). 

But many types of decision making are not about uncertainty reduction through error minimization 

using existing data. The purpose of large swaths of decision making is more about (in a sense) maximizing 

surprise and error, or what to others might look like error. In a strategy context, the most impactful 

opportunities and sources of value are not founded on immediately-available data. Rather, important decisions 

like this require the development of a theory, founded on some kind of heterogeneous belief, that maps a 

causal path or logic—for how to test the theory, experiment, and gather new evidence—to realize the belief. 

In an important sense, strategic decision making has more to do with unpredictability and the maximization of 

surprise rather than prediction and the minimization of surprise. Some decisions are highly-impactful, low-

frequency and rare, and fraught with uncertainty (Camuffo et al., 2022), and therefore not amenable to 

algorithmic processing. This is why theory-based decision making is not about appropriately representing the 

structure of the environment, or about bounded rationality or listening to customers—rather it is about 

developing a forward-looking theory and causal logic about how to experiment and create value (Felin, 

Gambardella, Novelli and Zenger, 2024).  

Notice that our focus on unpredictability and surprise does not mean that we are somehow outside 

the realms of science or data. Quite the contrary. The process of making forward-looking decisions is about developing an 

underlying theory-based causal logic of how one might intervene in the world to create salience for new data through experimentation 

and problem solving. As put by Einstein, “whether you can observe a thing or not depends on the theory which 

you use. It is the theory which decides what can be observed” (Polanyi, 1974: 604). Salience to the right (or 

new) data and experiment is given by a theory, not by past data. In this sense, theories could be said to have a 

“predictive” function, though here prediction is not a data-driven or error-minimizing process as it has been 

defined and operationalized within the context of AI (Agrawal et al., 2022) and cognitive science (cf. Clark, 
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2018). Now, if the task at hand is mundane—for example, “predict the next word in this sentence” or “tell me 

what you expect to see next”—then prediction with existing data can be useful. But the theory-based 

perspective of cognition is more focus on the forward-looking aspects of cognition, and how human agents 

realize beliefs by developing a multi-step causal path that enables the realization of beliefs through problem 

solving and experimentation. This is precisely what our example of the Wright brothers’ theory of flying—and 

their experimentation and problem solving—illustrates. It serves as microcosm of a far more general process 

of how humans cognitively intervene in their surroundings and through experimentation realize their beliefs. 

The economic domain is full of examples of how economic actors engage in this process (Felin and Zenger, 

2017). 

Our emphasis on surprise and unpredictability—rather than predictability and the minimization of 

error—is particularly important in competitive contexts. If everyone has access to the same prediction 

machines and AI-related information processing tools, then the outcomes are likely to be homogeneous. 

Strategy—if it is to create value—needs to be unique and firm-specific. And this firm-specificity is tied to 

unique beliefs and the development of a theory-based logic for creating value that is unforeseen (not 

predictable) by others. This assists economic actors in their attempts to “hack” competitive factor markets 

(Barney, 1986), to develop unique expectations about the value of assets and activities. It also enables firms to 

“search” in a more targeted fashion, rather than engaging in costly and exhaustive forms of global search 

(Felin, Kauffman and Zenger, 2023). Prediction based engines, while there are attempts to fine-tune them, are 

inherently based on past frequencies, correlations, and averages, rather than extremes. And in many instances, 

it is the extremes that turn out to be far more interesting, as these provide the seeds of the (eventual) beliefs 

and data that we take for granted.  

In all, we disagree with the emphasis that has been placed on prediction, algorithmic processing, and 

computation in decision making and cognition (e.g., Agrawal et al., 2022; Christian and Griffiths, 2016). 

Human decision making should not be relegated to AI (Kahneman, 2018). AI and AI-inspired models of 

cognition are based on backward-looking data and prediction rather than any form of forward-looking theory-

based causal logic. Emphasizing or relying on data and prediction is a debilitating limitation for not just 

decision making and cognition, but also for understanding knowledge generation and even scientific progress. 

Therefore we have emphasized the importance of heterogenous beliefs in human cognition, and the 
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development of theory-based causal logic that enables problem solving, experimentation and the generation of 

new data. 

FUTURE RESEARCH OPPORTUNITIES 

The above arguments suggest a number of research opportunities, particularly when it comes to 

understanding strategy and decision making under uncertainty. First, there is an opportunity to study when and 

how AI-related tools might be utilized by humans (like economic actors) to create new value or to aid in 

decision making. If AI—as a cognitive tool—is to be a source of competitive advantage, it has to be utilized in 

unique or firm-specific ways. AI that uses universally-available training data will necessarily yield generic and non-

specific outputs. There is the risk that off-the-shelf AI solutions will be susceptible to the “productivity 

paradox” of information technology (Brynjolffson and Hitt, 1998), where investments in AI actually do not 

yield any gains to those buying these tools (rather, only to those selling these technologies). Thus there is an 

opportunity to study how a specific decision maker’s—like a firm’s—own theory of value can drive the 

process of AI development and adoption. For AI to actually be a useful tool for strategy and decision making, 

AI needs to be customized, purpose-trained, and fine-tuned—it needs to be made specific—to the theories, 

datasets, and proprietary documents of decision makers like firms. For example, advances on “retrieval-

augmented generation” seem to offer a promising avenue to enhance specificity when using AI in strategic 

decision-making. Any adoption of AI should be deliberate about which corpora and training data are utilized 

(and which not) when seeking unique AI-driven outputs. After all, the outputs of an AI—tailored to use 

specific data—are also the product of human agents who make decisions about which data are relevant and 

(which are not) for the decision at hand. It is here that we see an opportunity to understand how humans 

might uniquely interact with AI to generate these tools and associated human-AI interfaces. Early work has 

begun to look at how firms utilize AI to increase innovation or how various human-AI hybrid solutions enable 

better decision making (e.g., Babina et al., 2024; Bell et al., 2024; Choudhary, Marchetti, Shrestha, and 

Puranam, 2023; Girotra et al., 2023; Gregory et al., 2021; Kemp, 2023; Kim et al., 2023; Raisch and Fomina, 

2023). But there are promising opportunities to study how a particular economic actor’s or firm’s own theory 

and causal logic—as well as their unique or firm-specific sources of data and information—can shape the 

development or adoption of AI-related tools for executing strategy and making decisions.   
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Second, there are ongoing opportunities to research—and develop taxonomies of—the respective 

capabilities of humans versus AI when it comes to different types of tasks, problems, and decisions. There is 

much excitement, hype, and fearmongering about the prospects of AI replacing humans tout court (cf. Grace et 

al., 2024). However, in reality, there will likely be a division of labor between humans and AI—with each 

focusing on the types of tasks, problems, and decisions that it is best suited for. There is an opportunity to 

study how economic actors like firms contingently “match” humans (and their cognitive capacities, jobs, roles) 

versus algorithms (or AI-related tools) with the right tasks and decisions. At present, clearly AI is remarkably 

well-suited for tasks and decisions that are repetitive, computationally intensive, and that directly extrapolate 

from past data. A significant number of decisions made by humans are relatively routine and amenable to 

algorithmic processing (Amaya and Holweg, 2024; Holmström, Holweg, Lawson, Pil, and Wagner, 2019). AI 

will therefore undoubtedly play a key role in many areas of management, especially where processes repeat, 

such as operations (Amaya and Holweg, 2024; Holmström, Holweg, Lawson, Pil, and Wagner, 2019). 

However, some decisions are more low-frequency and rare (Camuffo et al., 2022), and therefore not amenable 

to AI. Here we anticipate that humans will continue to play a central role, given their ability to engage in 

forward-looking theorizing and the development of causal logic beyond extant data. That said, naturally there 

is a “sliding scale” (and interfaces) between routine and non-routine decision making. Even in the context of 

rare-and-highly-impactful decision making, AI might play a role, perhaps in augmenting humans in the 

gathering, processing, or aggregation of information. As we have discussed in this paper, AI and humans have 

their respective strengths and limitations. Existing work tends to compare AI and humans on the same 

benchmarks, rather than recognizing the respective strengths of each. Studying the comparative capabilities of 

AI and humans—their respective capabilities, limitations, and ongoing evolution—represents a significant 

opportunity for future work.  

 Third, our arguments point to perhaps more “foundational” questions about the very nature of 

humans, particularly related to the purportedly computational nature of human cognition. While questions 

about the nature of cognition might sound overly abstract and philosophical, they are critically important as 

they have downstream consequences for the assumptions we make, the methods we employ, as well as how 

and what we study. Here we echo Herbert Simon who argued that ‘‘nothing is more important in setting our 

research agenda and informing our research methods than our view of the nature of the human beings whose 
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behavior we are studying’’ (1985: 303; emphasis added). So, what is the predominant view of human cognition 

within AI and the cognitive sciences (and by extension, in economics and strategy)? The predominant view of 

humans is that they are input-output devices engaged in information processing, akin to computers. The 

computer has served as a central, organizing metaphor of human cognition for well over seven decades—from 

the work of Alan Turing and Herbert Simon to modern instantiations of artificial neural networks, predictive 

processing, and the Bayesian brain (e.g., Cosmides and Tooby, 2013; Knill and Pouget, 2004; Goldstein and 

Gigerenzer, 2024; Kotseruba and Totsos, 2020; Russell and Norvig, 2022; Sun, 2023). A generalized 

computational approach to cognition, however, does not take into consideration the comparative nature of the 

organism under study, because humans, organisms, and machines are seen as “invariant” (see Simon, 1990; cf. 

Gershman et al., 2015; Simon, 1980). Studying these differences represents a significant opportunity for future 

work. There are significant differences in cognition, and these differences deserve careful attention. For 

example, computers do not meaningfully make decisions about which inputs might be relevant and which are 

not (nor can they meaningfully identify a new input), while humans have control over which inputs they might 

select or “generate” in the first place (e.g., Brembs, 2021; Felin and Koenderink, 2022; Yin, 2020). Human 

cognition is a form of forward-looking theorizing which is oriented toward experimentation and problem 

solving. Notice that we are not trying to argue for some kind of human exceptionalism, as these capacities are 

manifest—in different ways—across biological organisms more broadly (Riedl, 1984; cf. Popper, 1991).27 

There are significant research opportunities to study the endogenous and comparative factors that enable 

biological organisms and economic agents to theorize, problem solve, experiment—and to compare various 

forms of biological intelligence with artificial and nonbiological forms (cf. Levin, 2024). Treating all 

intelligence as generalized computation unnecessarily narrows the scope of theoretical and empirical work, and 

fundamentally misses the rich and heterogeneous ways that intelligence manifests itself across systems. 

Furthermore, the interfaces between biological and nonbiological forms of intelligence—as is manifest in the 

human use of technology and tools in evolution (Felin and Kauffman, 2023)—provide intriguing 

opportunities for future work.   

 
27 For example, even simple organisms like Drosophila (fruit flies) exhibit novel and surprising behaviors—like initiating 
activity, expectations, and problem solving—that cannot be explained by or reduced to environmental inputs, genetic 
factors or neural processing (see Heisenberg, 2014). Recent experiments highlight how rodents develop and test 
hypotheses and use cognitive strategies (Zhu and Kuchibhotla, 2024).  
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CONCLUSION 

In this article we have focused on the differences in cognition between AI and humans. While AI-

inspired models of cognition continue to emphasize the similarities between machines and humans, we argue 

that AI’s data and prediction-orientation does not capture human cognition. We grant that there are some 

parallels between AI and human cognition, as (very) broad forms of information processing. But we 

specifically emphasize the forward-looking nature of human cognition and how theory-based causal logic 

allows humans to intervene in the world, to engage in directed experimentation, and develop new knowledge 

and novelty. Heterogeneous beliefs and theories—data-belief asymmetries—enable the identification or 

generation of new data (for example, through experimentation), rather than merely being reliant on prediction 

based on the past data. AI-based computational models are necessarily built on data-belief symmetries. AI 

cannot causally map and project into or anticipate the future, as illustrated by LLMs which are delimited by 

past data. That said, our arguments by no means negate or question many of the exciting developments within 

the domain of AI. We anticipate that AI will help humans make better decisions across many domains, 

especially in settings that are conducive to routine, repetition, and computation. However, decisions under 

uncertainty—given the emphasis on unpredictability, surprise, and the new—provide a realm that is not readily 

amenable to data- or frequency-based prediction and associated computation. Thus we question the idea that 

AI will (or should) replace human decision making (e.g., Kahneman, 2018). We argue that humans—compared 

to computers and AI—have unique cognitive capacities that center on forward-looking beliefs and theorizing: 

the ability to engage in novel causal reasoning, problem solving, and experimentation.   
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